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Figure 1: Performance on a GTX 280 GPU of our adaptive-
manifold filter (AM) versus the permutohedral lattice (PL), and the
guided filter (GF). The vertical axis shows time, in seconds, to fil-
ter a 1 Megapixel RGB color image. The shaded areas represent
performance changes when σr varies from 1 (bottom curve) to 0.05
(top curve). The guided filter performance curve, in dashed red, is
based on performance numbers reported by Bauszat et al. [2011]
on a GTX 285 GPU.

See our project website for up-to-date information:

http://inf.ufrgs.br/∼eslgastal/AdaptiveManifolds/

1 GPU Performance and Filtering Quality

Figures 1 and 2 show GPU performance graphs for 5-D color im-
age filtering, comparing our adaptive-manifold filter (AM) against
the permutohedral lattice (PL) [Adams et al. 2010], which is fastest
color bilateral filter currently available, and also against the guided
filter (GF) [He et al. 2010]. Due to the simple and parallel op-
erations used by our approach, our filter is 3 to 200× faster than
PL, depending on filtering parameters and GPU used. Furthermore,
our filter is also 2 to 40× faster than the guided filter, while gen-
erating results indistinguishable from brute-force bilateral filtering
(Figure 3).

The guided filter does not compute true Euclidean distances be-
tween pixels. As a result, it may introduce artifacts in the filtered
images. Figure 4 shows one example where a noisy path-traced
global illumination image, shown in (a), was filtered using our
adaptive manifolds filter, shown in (b), and using the guided filter,
shown in (c). Note how the guided filter introduces haloing arti-
facts in certain regions of the image. These artifacts are not present
in the result produced by our filter. Further examples are presented
and discussed in our paper.

2 Values of K for RGB Color Image Filtering

Table 1 shows several values for the number of manifolds (K),
computed using Eq. (10) (from the paper) for performing RGB
color image filtering. Note how these values follow the guidelines
outlined in the beginning of Section 5.1: the number of manifolds
should increase with increasing spatial standard deviation, and
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Figure 2: Performance on a GTX 580 GPU of our adaptive-
manifold filter (AM) versus the permutohedral-lattice filter (PL).
The guided filter (GF) has no performance data available for such
a GPU. The vertical axis shows time, in seconds, to filter a 1
Megapixel RGB color image. The shaded areas represent perfor-
mance changes when σr varies from 1 (bottom curve) to 0.05 (top
curve).

σs
1 4 8 16 32 64 128

σ
r

0.01 3 3 3 7 15 31 63
0.10 3 3 3 7 15 31 63
0.20 3 3 3 7 15 15 31
0.40 3 3 3 3 7 7 15
1.00 3 3 3 3 3 3 3

Table 1: Several values of K computed for RGB color image fil-
tering.

should decrease with increasing range standard deviation. Please
refer to Section 5.1 of our paper for a more in-depth discussion.

3 Approximate Linearity

Appendix A in our paper proves that a good approximation for
Eq. (1) can be obtained using nonlinear manifolds if they are ap-
proximately linear in all local neighborhoods. Steps 1 and 4 of our
algorithm generate these approximately-linear manifolds by apply-
ing a low-pass filter h to pixels from the original signal. This sec-
tion shows why this procedure indeed generates the desired results.
Although this analysis is performed for 1-D signals, the same argu-
ments generalizes to arbitrary dimensions due to the separability of
the filtering operations.

Definition S.1: A 1-D function (e.g., manifold) η(x) is linear if its
second derivative (or curvature) is zero for all x: ∂xxη = 0. It
is said to be approximately-linear in an interval [a, b] if the total
curvature over this interval is less than some small value ε:∫ b

a

∣∣∂xxη∣∣ dx < ε. (i)

Proposition S.1: For any ε > 0, any interval [a, b], and any signal
f whose derivatives follow natural-image distributions [Weiss and
Freeman 2007], there exists a low-pass filter hσ with standard de-
viation σ for which η = f ∗ hσ is approximately linear according
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to Eq. (i).

Proof. The derivative of a convolution can be decomposed as:

∂xxη = ∂xx(f ∗ hσ) = (∂xxf) ∗ hσ. (ii)

This convolution performs local averaging of the values ∂xxf ,
which are realizations of a random variable. Eq. (ii) converges to
the population’s expected value E[∂xxf ] as more samples are aver-
aged — i.e., as the standard deviation σ of the filter increases. For
a particular σ value, the variance of the estimator given by Eq. (ii)
is proportional to V ar[∂xxf ]/σ. Thus, for some constant γ:∣∣(∂xxf) ∗ hσ − E[∂xxf ]

∣∣ < γ

σ
V ar[∂xxf ]. (iii)

The output of derivative filters applied to natural images have (non-
Gaussian) distributions which peak at, and are symmetric about,
zero [Weiss and Freeman 2007], and henceE[∂xxf ] ≈ 0. Plugging
this into Eq. (iii) and integrating both sides in the interval [a, b]:∫ b

a

∣∣(∂xxf) ∗ hσ
∣∣ dx < ∫ b

a

γ

σ
V ar[∂xxf ] dx. (iv)

Evaluating the integral on the right-hand-side yields:∫ b

a

∣∣(∂xxf) ∗ hσ
∣∣ dx < γ

σ
(b− a)V ar[∂xxf ]. (v)

Since the standard deviation σ is a free parameter of the low-pass
filter, for any ε > 0 and any interval [a, b] one can always find
a filter hσ with standard deviation σ sufficiently large such that
the right-hand-side of Eq. (v) evaluates to less than ε, and thus
η = f ∗ hσ is approximately linear according to Definition S.1. �

Note that Proposition S.1 is not valid for a general signal f . One
particular example would be the signal defined by f(x) = x2, for
which a convolution with any symmetric low-pass filter (disregard-
ing boundary conditions) does not alter its curvature ∂xxx2 = 2.

4 Splatting onto the Adaptive Manifolds

The term Ψ
Pk
splat(η̂kj) in Eq. (20) defines a Gaussian distance-

weighted splatting of a pixel’s color fj onto a flat Pk. Note that
the parameter of the Gaussian is the distance of p̂j to the flat Pk (in
a space scaled by Σ

−1/2
η ).

Our approach uses nonlinear manifolds instead of flats, thus, when
splatting a pixel’s color fj onto an adaptive manifoldMk, one must
compute the distance from p̂j to Mk. Since this manifold is only
approximately linear, this can be done in a few ways.

Following the term Ψ
Pk
splat(η̂kj) in Eq. (20), one way to compute the

distance to a manifold would be to find the flat Pkj which approx-
imates this manifold in the neighborhood around pj . The Gaus-
sian distance-weighted projection should then be performed using
the closest distance between p̂j and Pkj . However, finding this
flat would require some sort of linear regression on points sampled
from ηk; or the computation of tangent flats.

Another way of computing this distance is by projecting the point
p̂j onto the manifold Mk along the dimensions of the range R.
With this approach, the projection point on the manifold would be,
by definition, η̂kj . Furthermore, since this projection is along R,
the complexity of computing the distance from p̂j to η̂kj , used for
splatting, is O(dR) (remember that p̂j and η̂kj have exactly the
same coordinates in S). This is the approach we use to splat onto
the manifolds (Eq. (3)). However, notice that at the projection point
η̂kj on the manifold, the basis which locally spans the manifold
(and which defines, in blurring stage, the direction of blurring) is

not orthogonal to the direction of this projection (i.e., not orthogo-
nal to η̂kj − p̂j). Thus, this introduces an accuracy penalty, since
the Gaussian is only truly separable for orthogonal directions. A
similar error appears in other approaches which discretize the high-
dimensional space (i.e., it is a sampling error).

5 Sampling Rate for Recursive Filter

The recursive filter h described by Eq. (13), when applied twice
(once in each direction) has discrete impulse response (for an im-
pulse at n = 0) given by

h[n] = − 1√
2σl

exp

(
−
√

2 |n|
σl

)
, (vi)

where |n| is the absolute value of n. The discrete-time Fourier
transform of this filter is given by

H[ω] =

sinh

(√
2

σl

)
√

2σl

(
cosh

(√
2

σl

)
− cos (ω)

) , (vii)

where ω ∈ [−π, π] is the frequency parameter. Note that H is pe-
riodic outside the interval [−π, π], since the filter is discrete-time.
The cut-off frequency ωc of h (i.e., the frequency above which all
frequencies are attenuated by h below a small threshold τ ), is ob-
tained solving H[ωc] = τ for ωc. This yields

ωc = acos

cosh

(√
2

σl

)
−

sinh

(√
2

σl

)
√

2 τ σl

 . (viii)

When this equation is solvable for ωc ∈ R, any signal f filtered
with h can be considered bandlimited to the interval [−ωc, ωc].
Thus, in practice, if the original signal f is represented by N sam-
ples, the filtered version of f , obtained with the filter h, should
be represented by at least N ωc/π samples. In our implementa-
tion, we represent this filtered signal with min(N, 4N/σl) sam-
ples, which is equivalent to a cut-off frequency ωc obtained with
threshold τ = 0.0125.

6 Eigenvector Computation

Proposition S.2: For a positive-definite matrix XXT of size
dR × dR, with eigenvectors v1, . . . , vdR and eigenvalues λ1 >
λ2 ≥ . . . ≥ λdR > 0,

if (∀i 6= 1, λ1 > λi) then
(

lim
m→∞

(XXT )mw ∝ v1
)

;

where w is a random vector not orthogonal to v1.

Proof. The eigenvectors v1, . . . , vdR form an orthonormal basis
for RdR . The vector w can be expressed on this basis as

w = a1v1 + a2v2 + · · · + adRvdR , (ix)

for scalars a1, . . . , adR . From this it follows that

(XXT )mw

= (XXT )m(a1v1 + a2v2 + · · · + adRvdR)

= a1(XXT )mv1 + a2(XXT )mv2 + · · · + adR(XXT )mvdR
= a1λ

m
1 v1 + a2λ

m
2 v2 + · · · + adRλ

m
dRvdR

= a1λ
m
1

(
v1 +

a2
a1

(
λ2

λ1

)m
v2 + · · ·+ adR

a1

(
λdR
λ1

)m
vdR

)
.



The last line is well defined since w is not orthogonal to v1 (i.e.,
a1 6= 0). Noting that

if (∀i 6= 1, λ1 > λi) then

(
lim
m→∞

(
λi
λ1

)m
= 0

)
,

we have

lim
m→∞

(XXT )m w = a1λ
m
1 v1 ∝ v1. �

Observation: if the largest eigenvalue λ1 is not unique (i.e., the
characteristic polynomial has a multiple root at λ1, with multiplic-
ity r), (XXT )mw will converge to a linear combination of all r
eigenvectors v1, . . . , vr associated with λ1. This combination will
be defined by the scalars a1, . . . , ar — i.e., will be defined by the
choice of random vector w. For our filter, this means that the pixels
are isotropically distributed around the manifolds for the r direc-
tions of maximum variation. Thus this combination of eigenvectors
will provide a good segmentation for Step 3 of our manifold cre-
ation process (Section 4).

Note also that using a value of m+ 1 for the exponent always pro-
duces a better approximation for v1 than using a value of m.
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(a) Photograph (b) Bilateral σs = 16, σr = 0.1 (c) Bilateral σs = 8, σr = 0.25 (d) Bilateral σs = 16, σr = 0.5

(e) Ours σs = 16, σr = 0.1 (f) Ours σs = 8, σr = 0.25 (g) Ours σs = 16, σr = 0.5

(h) Inset (i) Bilateral σs = 16, σr = 0.1 (j) Bilateral σs = 8, σr = 0.25 (k) Bilateral σs = 16, σr = 0.5

(l) Ours σs = 16, σr = 0.1 (m) Ours σs = 8, σr = 0.25 (n) Ours σs = 16, σr = 0.5

Figure 3: Our filter achieves a PSNR above 40 dB against brute-force bilateral filtering, which is practically indistinguishable visual
difference.



(d) Path-traced image (e) Our AM filter (f) Guided filter
Figure 4: Example of global illumination filtering. The path-traced image in (a) was rendered with 1 sample per pixel for direct and indirect
illumination. Our filter in (b) generates a smooth shading from the noisy input by working in a 4-D space composed of 3-D geometric normal
vectors and 1-D scene depth. The guided filter in (c) works on the same 4-D space, however it introduces haloing artifacts in certain image
regions (indicated by the red arrows). This happens since the guided filter does not compute true Euclidean distance between pixels, as
discussed in our main text.


